码炫课堂主讲老师师smart哥预计耗时10个月最新力作《jdk源码解析&多线程&高并发》大体系课福利大放送,从收费课中选出精华部分免费公开出来给大家,希望可以帮助大家夯实基础,根深蒂固。最后smart哥送大家一句:直击本质,任上层如何繁华,你所看到的只是表象,而内在的原理才能通往真理。
讲师简介
smart哥,互联网悍将,历经从传统软件公司到大型互联网公司的洗礼,入行即在中兴通讯等大型通信公司担任项目leader,后随着互联网的崛起,先后在美团支付等大型互联网公司担任架构师,公派旅美期间曾与并发包大神Doug Lea探讨java多线程等最底层的核心技术。对互联网架构底层技术有相当的研究和独特的见解,在多个领域有着丰富的实战经验。
一、源码解析
Java的Object是所有其他类的父类,从继承的层次来看它就是最顶层根,所以它也是唯一一个没有父类的类。它包含了对象常用的一些方法,比如getClass
、hashCode
、equals
、clone
、toString
、notify
、wait
等常用方法。所以其他类继承了Object后就可以不用重复实现这些方法。这些方法大多数是native方法,下面具体分析。
主要的代码如下:
public class Object {
private static native void registerNatives();
static {
registerNatives();
}
public Object() {}
public final native Class<?> getClass();
public native int hashCode();
public boolean equals(Object obj) {
return (this == obj);
}
protected native Object clone() throws CloneNotSupportedException;
public String toString() {
return getClass().getName() + "@" + Integer.toHexString(hashCode());
}
public final native void notify();
public final native void notifyAll();
public final native void wait(long timeout) throws InterruptedException;
public final void wait(long timeout, int nanos) throws InterruptedException {
if (timeout < 0) {
throw new IllegalArgumentException("timeout value is negative");
}
if (nanos < 0 || nanos > 999999) {
throw new IllegalArgumentException("nanosecond timeout value out of range");
}
if (nanos > 0) {
timeout++;
}
wait(timeout);
}
public final void wait() throws InterruptedException {
wait(0);
}
protected void finalize() throws Throwable {}
}
registerNatives方法
由于registerNatives方法被static块修饰,所以在加载Object类时就会执行该方法,对应的本地方法为Java_java_lang_Object_registerNatives
,如下,
JNIEXPORT void JNICALL
Java_java_lang_Object_registerNatives(JNIEnv *env, jclass cls)
{
(*env)->RegisterNatives(env, cls,
methods, sizeof(methods)/sizeof(methods[0]));
}
(*env)-> 表示访问的jni函数。JNIEnv是指向类型为JNIEnv_的一个特殊JNI数据结构的指针,当由c++编译器编译时JNIEnv_结构其实被定义为一个类,这个类中定义了很多内嵌函数,通过使用“->”符号,可以很方便的使用这些函数。
可以看到它间接调用了JNINativeInterface_
结构体的方法,简单可以看成是这样:它干的事大概就是将Java层的方法名和本地函数对应起来,方便执行引擎在执行字节码时根据这些对应关系表来调用C/C++函数,如下面,将这些方法进行注册,执行引擎执行到hashCode
方法时就可以通过关系表来查找到JVM的JVM_IHashCode
函数,其中()I
还可以得知Java层上的类型应该转为int类型。这个映射其实就可以看成将字符串映射到函数指针。
static JNINativeMethod methods[] = {
{"hashCode", "()I", (void *)&JVM_IHashCode},
{"wait", "(J)V", (void *)&JVM_MonitorWait},
{"notify", "()V", (void *)&JVM_MonitorNotify},
{"notifyAll", "()V",(void *)&JVM_MonitorNotifyAll},
{"clone","()Ljava/lang/Object;", (void *)&JVM_Clone},
};
getClass方法
getClass方法也是个本地方法,对应的本地方法为Java_java_lang_Object_getClass
,如下:
JNIEXPORT jclass JNICALL
Java_java_lang_Object_getClass(JNIEnv *env, jobject this)
{
if (this == NULL) {
JNU_ThrowNullPointerException(env, NULL);
return 0;
} else {
return (*env)->GetObjectClass(env, this);
}
}
所以这里主要就是看GetObjectClass
函数了,Java层的Class在C++层与之对应的则是klassOop
,所以关于类的元数据和方法信息可以通过它获得。
JNI_ENTRY(jclass, jni_GetObjectClass(JNIEnv *env, jobject obj))
JNIWrapper("GetObjectClass");
DTRACE_PROBE2(hotspot_jni, GetObjectClass__entry, env, obj);
klassOop k = JNIHandles::resolve_non_null(obj)->klass();
jclass ret =
(jclass) JNIHandles::make_local(env, Klass::cast(k)->java_mirror());
DTRACE_PROBE1(hotspot_jni, GetObjectClass__return, ret);
return ret;
JNI_END
hashCode方法
由前面registerNatives方法将几个本地方法注册可知,hashCode方法对应的函数为JVM_IHashCode
,即
JVM_ENTRY(jint, JVM_IHashCode(JNIEnv* env, jobject handle))
JVMWrapper("JVM_IHashCode");
// as implemented in the classic virtual machine; return 0 if object is NULL
return handle == NULL ? 0 : ObjectSynchronizer::FastHashCode (THREAD, JNIHandles::resolve_non_null(handle)) ;
JVM_END
对于hashcode生成的逻辑由synchronizer.cpp
的get_next_hash
函数决定,实现比较复杂,根据hashcode的不同值有不同的生成策略,最后使用一个hash掩码处理。见Xorshift算法
static inline intptr_t get_next_hash(Thread * Self, oop obj) {
intptr_t value = 0 ;
if (hashCode == 0) {
value = os::random() ;
} else
if (hashCode == 1) {
intptr_t addrBits = intptr_t(obj) >> 3 ;
value = addrBits ^ (addrBits >> 5) ^ GVars.stwRandom ;
} else
if (hashCode == 2) {
value = 1 ; // for sensitivity testing
} else
if (hashCode == 3) {
value = ++GVars.hcSequence ;
} else
if (hashCode == 4) {
value = intptr_t(obj) ;
} else {
unsigned t = Self->_hashStateX ;
t ^= (t << 11) ;
Self->_hashStateX = Self->_hashStateY ;
Self->_hashStateY = Self->_hashStateZ ;
Self->_hashStateZ = Self->_hashStateW ;
unsigned v = Self->_hashStateW ;
v = (v ^ (v >> 19)) ^ (t ^ (t >> 8)) ;
Self->_hashStateW = v ;
value = v ;
}
value &= markOopDesc::hash_mask;
if (value == 0) value = 0xBAD ;
assert (value != markOopDesc::no_hash, "invariant") ;
TEVENT (hashCode: GENERATE) ;
return value;
}
equals方法
这是一个非本地方法,判断逻辑也十分简单,直接==比较。
clone方法
由本地方法表知道clone方法对应的本地函数为JVM_Clone
,clone方法主要实现对象的克隆功能,根据该对象生成一个相同的新对象(我们常见的类的对象的属性如果是原始类型则会克隆值,但如果是对象则会克隆对象的地址)。Java的类要实现克隆则需要实现Cloneable接口,if (!klass->is_cloneable())
这里会校验是否有实现该接口。然后判断是否是数组分两种情况分配内存空间,新对象为new_obj,接着对new_obj进行copy及C++层数据结构的设置。最后再转成jobject类型方便转成Java层的Object类型。
JVM_ENTRY(jobject, JVM_Clone(JNIEnv* env, jobject handle))
JVMWrapper("JVM_Clone");
Handle obj(THREAD, JNIHandles::resolve_non_null(handle));
const KlassHandle klass (THREAD, obj->klass());
JvmtiVMObjectAllocEventCollector oam;
if (!klass->is_cloneable()) {
ResourceMark rm(THREAD);
THROW_MSG_0(vmSymbols::java_lang_CloneNotSupportedException(), klass->external_name());
}
const int size = obj->size();
oop new_obj = NULL;
if (obj->is_javaArray()) {
const int length = ((arrayOop)obj())->length();
new_obj = CollectedHeap::array_allocate(klass, size, length, CHECK_NULL);
} else {
new_obj = CollectedHeap::obj_allocate(klass, size, CHECK_NULL);
}
Copy::conjoint_jlongs_atomic((jlong*)obj(), (jlong*)new_obj,
(size_t)align_object_size(size) / HeapWordsPerLong);
new_obj->init_mark();
BarrierSet* bs = Universe::heap()->barrier_set();
assert(bs->has_write_region_opt(), "Barrier set does not have write_region");
bs->write_region(MemRegion((HeapWord*)new_obj, size));
if (klass->has_finalizer()) {
assert(obj->is_instance(), "should be instanceOop");
new_obj = instanceKlass::register_finalizer(instanceOop(new_obj), CHECK_NULL);
}
return JNIHandles::make_local(env, oop(new_obj));
JVM_END
toString方法
逻辑是获取class名称加上@再加上十六进制的hashCode。
notify方法
此方法用来唤醒线程,final修饰说明不可重写。与之对应的本地方法为JVM_MonitorNotify
,ObjectSynchronizer::notify
最终会调用ObjectMonitor::notify(TRAPS)
,这个过程是ObjectSynchronizer会尝试当前线程获取free ObjectMonitor对象,不成功则尝试从全局中获取。
JVM_ENTRY(void, JVM_MonitorNotify(JNIEnv* env, jobject handle))
JVMWrapper("JVM_MonitorNotify");
Handle obj(THREAD, JNIHandles::resolve_non_null(handle));
assert(obj->is_instance() || obj->is_array(), "JVM_MonitorNotify must apply to an object");
ObjectSynchronizer::notify(obj, CHECK);
JVM_END
ObjectMonitor对象包含一个_WaitSet
队列对象,此对象保存着所有处于wait状态的线程,用ObjectWaiter对象表示。notify要做的事是先获取_WaitSet
队列锁,再取出_WaitSet
队列中第一个ObjectWaiter对象,再根据不同策略处理该对象,比如把它加入到_EntryList
队列中。然后再释放_WaitSet
队列锁。它并没有释放synchronized对应的锁,所以锁只能等到synchronized同步块结束时才释放。
void ObjectMonitor::notify(TRAPS) {
CHECK_OWNER();
if (_WaitSet == NULL) {
TEVENT (Empty-Notify) ;
return ;
}
DTRACE_MONITOR_PROBE(notify, this, object(), THREAD);
int Policy = Knob_MoveNotifyee ;
Thread::SpinAcquire (&_WaitSetLock, "WaitSet - notify") ;
ObjectWaiter * iterator = DequeueWaiter() ;
if (iterator != NULL) {
TEVENT (Notify1 - Transfer) ;
guarantee (iterator->TState == ObjectWaiter::TS_WAIT, "invariant") ;
guarantee (iterator->_notified == 0, "invariant") ;
if (Policy != 4) {
iterator->TState = ObjectWaiter::TS_ENTER ;
}
iterator->_notified = 1 ;
ObjectWaiter * List = _EntryList ;
if (List != NULL) {
assert (List->_prev == NULL, "invariant") ;
assert (List->TState == ObjectWaiter::TS_ENTER, "invariant") ;
assert (List != iterator, "invariant") ;
}
if (Policy == 0) { // prepend to EntryList
if (List == NULL) {
iterator->_next = iterator->_prev = NULL ;
_EntryList = iterator ;
} else {
List->_prev = iterator ;
iterator->_next = List ;
iterator->_prev = NULL ;
_EntryList = iterator ;
}
} else
if (Policy == 1) { // append to EntryList
if (List == NULL) {
iterator->_next = iterator->_prev = NULL ;
_EntryList = iterator ;
} else {
// CONSIDER: finding the tail currently requires a linear-time walk of
// the EntryList. We can make tail access constant-time by converting to
// a CDLL instead of using our current DLL.
ObjectWaiter * Tail ;
for (Tail = List ; Tail->_next != NULL ; Tail = Tail->_next) ;
assert (Tail != NULL && Tail->_next == NULL, "invariant") ;
Tail->_next = iterator ;
iterator->_prev = Tail ;
iterator->_next = NULL ;
}
} else
if (Policy == 2) { // prepend to cxq
// prepend to cxq
if (List == NULL) {
iterator->_next = iterator->_prev = NULL ;
_EntryList = iterator ;
} else {
iterator->TState = ObjectWaiter::TS_CXQ ;
for (;;) {
ObjectWaiter * Front = _cxq ;
iterator->_next = Front ;
if (Atomic::cmpxchg_ptr (iterator, &_cxq, Front) == Front) {
break ;
}
}
}
} else
if (Policy == 3) { // append to cxq
iterator->TState = ObjectWaiter::TS_CXQ ;
for (;;) {
ObjectWaiter * Tail ;
Tail = _cxq ;
if (Tail == NULL) {
iterator->_next = NULL ;
if (Atomic::cmpxchg_ptr (iterator, &_cxq, NULL) == NULL) {
break ;
}
} else {
while (Tail->_next != NULL) Tail = Tail->_next ;
Tail->_next = iterator ;
iterator->_prev = Tail ;
iterator->_next = NULL ;
break ;
}
}
} else {
ParkEvent * ev = iterator->_event ;
iterator->TState = ObjectWaiter::TS_RUN ;
OrderAccess::fence() ;
ev->unpark() ;
}
if (Policy < 4) {
iterator->wait_reenter_begin(this);
}
// _WaitSetLock protects the wait queue, not the EntryList. We could
// move the add-to-EntryList operation, above, outside the critical section
// protected by _WaitSetLock. In practice that's not useful. With the
// exception of wait() timeouts and interrupts the monitor owner
// is the only thread that grabs _WaitSetLock. There's almost no contention
// on _WaitSetLock so it's not profitable to reduce the length of the
// critical section.
}
Thread::SpinRelease (&_WaitSetLock) ;
if (iterator != NULL && ObjectMonitor::_sync_Notifications != NULL) {
ObjectMonitor::_sync_Notifications->inc() ;
}
}
notifyAll方法
与notify方法类似,只是在取_WaitSet
队列时不是取第一个而是取所有。
wait方法
wait方法是让线程等待,它对应的本地方法是JVM_MonitorWait
,间接调用了ObjectSynchronizer::wait
,与notify对应,它也是对应调用ObjectMonitor对象的wait方法。该方法较长,这里不贴出来了,大概就是创建一个ObjectWaiter对象,接着获取_WaitSet
队列锁将ObjectWaiter对象添加到该队列中,再释放队列锁。另外,它还会释放synchronized对应的锁,所以锁不会等到synchronized同步块结束时才释放。
JVM_ENTRY(void, JVM_MonitorWait(JNIEnv* env, jobject handle, jlong ms))
JVMWrapper("JVM_MonitorWait");
Handle obj(THREAD, JNIHandles::resolve_non_null(handle));
assert(obj->is_instance() || obj->is_array(), "JVM_MonitorWait must apply to an object");
JavaThreadInObjectWaitState jtiows(thread, ms != 0);
if (JvmtiExport::should_post_monitor_wait()) {
JvmtiExport::post_monitor_wait((JavaThread *)THREAD, (oop)obj(), ms);
}
ObjectSynchronizer::wait(obj, ms, CHECK);
JVM_END
finalize方法
这个方法用于当对象被回收时调用,这个由JVM支持,Object的finalize方法默认是什么都没有做,如果子类需要在对象被回收时执行一些逻辑处理,则可以重写finalize方法。
二、深度挖掘
1、你真的懂Object类吗?一个简单的类Person并没有显式继承Object类,jvm是如何关联的?
- 编译器处理(帮你加上extends Object)
- JVM处理
2、Object类的native方法深层原理及手写java程序调用c或者c++的方法扩展Object类。(详细代码演示见视频讲解)
https://docs.oracle.com/javase/8/docs/technotes/guides/jni/spec/jniTOC.html
在介绍 native 之前,我们先了解什么是 JNI。
一般情况下,我们完全可以使用 Java 语言编写程序,但某些情况下,Java 可能会不满足应用程序的需求,或者是不能更好的满足需求,比如:
①、标准的 Java 类库不支持应用程序平台所需的平台相关功能。
②、我们已经用另一种语言编写了一个类库,如何用Java代码调用?
③、某些运行次数特别多的方法代码,为了加快性能,我们需要用更接近硬件的语言(比如汇编)编写。
上面这三种需求,其实说到底就是如何用 Java 代码调用不同语言编写的代码。那么 JNI 应运而生了。
从Java 1.1开始,Java Native Interface (JNI)标准就成为java平台的一部分,它允许Java代码和其他语言写的代码进行交互。JNI一开始是为了本地已编译语言,尤其是C和C++而设计 的,但是它并不妨碍你使用其他语言,只要调用约定受支持就可以了。使用java与本地已编译的代码交互,通常会丧失平台可移植性。但是,有些情况下这样做是可以接受的,甚至是必须的,比如,使用一些旧的库,与硬件、操作系统进行交互,或者为了提高程序的性能。JNI标准至少保证本地代码能工作在任何Java 虚拟机实现下。
步骤如下:
- 编写带有 native 声明的方法的java类,生成.java文件;(注意这里出现了 native 声明的方法关键字)
- 使用 javac命令编译所编写的java类,生成.class文件;
- 使用 javah -jni java类名 生成扩展名为 h 的头文件,也即生成.h文件;
- 使用C/C++(或者其他编程想语言)实现本地方法,创建.h文件的实现,也就是创建.cpp文件实现.h文件中的方法;
- 将C/C++编写的文件生成动态连接库,生成dll文件;
.h 文件就是接口,cpp文件就是实现,dll文件就是jar
win下动态库 dll
linux 下 so
手写java native方法调用c++实现
需求:新安装一台扫描仪,java程序调用打印机驱动(c写的),传入2个整数(打印和复印张数),返回两数之和。
总结:对应流程图
3、hashCode究竟是不是内存地址?
代码验证
linux的创始人linus 。talk is cheap ,show me the code。
4、什么情况下需要重写equals()和hashCode()。
主要涉及hashmap的put和get源码
hashmap.put(new Person(1),"sss");
hashmap.put(new Person(2),"sss");
Hash算法
先复习一下数据结构里的一个知识点:在一个长度为 n(假设是 10000)的线性表(假设是ArrayList)里,存放着无序的数字;如果我们要找一个指定的数字,就不得不通过从头到尾依次遍历来查找。
我们再来观察Hash表(这里的Hash表纯粹是数据结构上的概念,和Java无关)。它的平均查找次数接近于 1,代价相当小,关键是在Hash表里,存放在其中的数据和它的存储位置是用Hash函数关联的。
我们假设一个Hash函数是 x * x % 5
。当然实际情况里不可能用这么简单的Hash函数,这里纯粹为了说明方便,而Hash表是一个长度是 11的线性表。如果我们要把 6放入其中,那么我们首先会对 6用Hash函数计算一下,结果是 1,所以我们就把 6放入到索引号是 1这个位置。同样如果我们要放数字 7,经过Hash函数计算, 7的结果是 4,那么它将被放入索引是 4的这个位置。这个效果如下图所示。
这样做的好处非常明显。比如我们要从中找 6这个元素,我们可以先通过Hash函数计算 6的索引位置,然后直接从 1号索引里找到它了。
不过我们会遇到“Hash值冲突”这个问题。比如经过Hash函数计算后, 7和 8会有相同的Hash值,对此Java的HashMap对象采用的是"链地址法"的解决方案。效果如下图所示:
具体的做法是,为所有Hash值是 i的对象建立一个同义词链表。假设我们在放入 8的时候,发现 4号位置已经被占,那么就会新建一个链表结点放入 8。同样,如果我们要找 8,那么发现 4号索引里不是 8,那会沿着链表依次查找。
虽然我们还是无法彻底避免Hash值冲突的问题,但是Hash函数设计合理,仍能保证同义词链表的长度被控制在一个合理的范围里。这里讲的理论知识并非无的放矢,大家能在后文里清晰地了解到重写hashCode方法的重要性。
为什么要重写equals和hashCode算法?
当我们用 HashMap存入自定义的类时,如果不重写这个自定义类的equals和hashCode方法,得到的结果会和我们预期的不一样。
我们定义了一个 Key类;在其中定义了唯一的一个属性 id。当前我们先注释 equals()方法和 hashCode()方法。
结语
码炫课堂3位1体大体系课之-【jdk源码解析&多线程&高并发】第一期即将开启,主讲老师smart哥将会带大家彻底扒光jdk。jdk源码是一切组件的源头及基础,如果对jdk源码没有一个清晰的认识你将无法阅读tomcat,netty,dubbo,spring,springboot等优秀组件及框架的源码,你将永远只是一个CURDer,升职加薪基本与你无缘。
后期会陆陆续续开启课程如下:
【springboot&spring源码解析】
【tomcat源码解析&手写tomcat】
【netty源码解析&手写reactor框架】
【dubbo源码解析&手写RPC框架】
【redis源码解析】
最后,纯讲源码的都是耍流氓,割韭菜。学习源码是为了更清晰的认识原理并理解其背后的思想,如果是为了学源码而学源码,那是极其愚蠢的行为。
课程目录:
2、Object类源码解析(c++源码解析native方法加载原理)(34:03)
4、手写java程序调用c或者c++的方法扩展Object类(45:46)
5、案例及源码解析hashcode证明hashcode不是对象的内存地址(37:17)
6、案例及源码解析hashmap证明hashcode和equals方法必须同时修改的场景(46:02)